28 SEP 2021 by ideonexus

 Prime Numbers and Cryptography

Algorithms for finding prime numbers date back at least as far as ancient Greece, where mathematicians used a straightforward approach known as the Sieve of Erastothenes. The Sieve of Erastothenes works as follows: To find all the primes less than n, begin by writing down all the numbers from 1 to n in sequence. Then cross out all the numbers that are multiples of 2, besides itself (4, 6, 8, 10, 12, and so on). Take the next smallest number that hasn’t been crossed out (in this case, 3), an...
  1  notes
 
28 SEP 2021 by ideonexus

 The Stopping Problem

The 37% Rule derives from optimal stopping’s most famous puzzle, which has come to be known as the “secretary problem.” Its setup is much like the apartment hunter’s dilemma that we considered earlier. Imagine you’re interviewing a set of applicants for a position as a secretary, and your goal is to maximize the chance of hiring the single best applicant in the pool. While you have no idea how to assign scores to individual applicants, you can easily judge which one you prefer. (A m...
Folksonomies: computational thinking
Folksonomies: computational thinking
  1  notes
 
08 NOV 2019 by ideonexus

 Why numbering should start at zero

When dealing with a sequence of length N, the elements of which we wish to distinguish by subscript, the next vexing question is what subscript value to assign to its starting element. Adhering to convention a) yields, when starting with subscript 1, the subscript range 1 ≤ i < N 1; starting with 0, however, gives the nicer range 0 ≤ i < N. So let us let our ordinals start at zero: an element's ordinal (subscript) equals the number of elements preceding it in the sequence. And the ...
Folksonomies: computer science
Folksonomies: computer science
  1  notes
04 NOV 2018 by ideonexus

 A Computer Algorithm for Randomization

Back in the early days of computers, one of the more popular methods of generating a sequence of random numbers was to employ the following scheme: 1. Choose a starting number between 0 and 1. 2. Multiply the starting number by 4 ("stretch" it). Subtract 4 times the square of the starting number from the quantity obtained in step 2 ("fold" the interval back on itself in order to keep the final result in the same range). 3.Given a starting number between 0 and 1, we can use the proce-dure...
Folksonomies: algorithms randomization
Folksonomies: algorithms randomization
  1  notes

From John Casti.

27 JUL 2018 by ideonexus

 Constituative Rules of Chutes and Ladders

Players all begin with a value of zero. Players alternate turns adding a random number of 1–6 to their current value. The first player to reach a value of exactly 100 wins (if adding the random number to a player's total would make the total exceed 100, do not add the random number this turn). When a player's total exactly reaches certain numbers, the total changes. For example, if a player reaches exactly 9, her total becomes 31. If a player reaches exactly 49, her total becomes 11.(This r...
Folksonomies: gameplay isomorph
Folksonomies: gameplay isomorph
  1  notes
 
18 MAY 2017 by ideonexus

 The Wonder of a Child Learning Their Native Language

Imagine you are faced with the following challenge: You must discover the underlying structure of an immense system that contains tens of thousands of pieces, all generated by combining a small set of elements in various ways. These pieces, in turn, can be combined in an infinite number of ways, although only a subset of these combinations is actually correct. However, the subset that is correct is itself infinite. Somehow you must rapidly figure out the structure of this system so that you c...
Folksonomies: learning language
Folksonomies: learning language
  1  notes
 
24 DEC 2016 by ideonexus

 Number Scrabble: Numerical Tic-Tac-Toe

In psychological research on problem-solving, sometimes the game of Tic-Tac-Toe is employed, which, though very simple to learn and play, still offers sufficient problems to the investigator in that it is not at all clear what heuristics are used by the subjects, except avoiding the winning move of the opponent. The same is apparently true for the isomorphic game of Number Scrabble, which is based on the fact that there exists a 3 X 3 magic square, of which rows, columns, and main diagonals a...
  1  notes
 4   3   8 
 9   5   1 
 2   7   6